CPU Benchmark Performance: Simulation And Rendering

Simulation and Science have a lot of overlap in the benchmarking world, however for this distinction we’re separating into two segments mostly based on the utility of the resulting data. The benchmarks that fall under Science have a distinct use for the data they output – in our Simulation section, these act more like synthetics but at some level are still trying to simulate a given environment.

We are using DDR5 memory at the following settings:

  • DDR5-4800(B) CL40


(3-2a) Dwarf Fortress 0.44.12 World Gen 65x65, 250 Yr

(3-2b) Dwarf Fortress 0.44.12 World Gen 129x129, 550 Yr

(3-2c) Dwarf Fortress 0.44.12 World Gen 257x257, 550 Yr

(3-3) Dolphin 5.0 Render Test

(3-4a) Factorio v1.1.26 Test, 10K Trains

(3-4b) Factorio v1.1.26 Test, 10K Belts

(3-4c) Factorio v1.1.26 Test, 20K Hybrid

When it comes to simulation, the higher core clock speeds of the Core i9-12900KS didn't make any effect in our Factorio benchmark, which AMD's Ryzen 7 5800X3D with 3D V-Cache gives a more effective boost to performance. In our Dolphin test, the Core i9-12900KS was quicker by around 7-8%, and in our Dwarf Fortress benchmark, the Core i9-12900KS was better than the K, but not as good as the Ryzen 7 5800X3D.


(4-1) Blender 2.83 Custom Render Test

(4-2) Corona 1.3 Benchmark

(4-4) POV-Ray 3.7.1

(4-5) V-Ray Renderer

(4-6a) CineBench R20 Single Thread

(4-6b) CineBench R20 Multi-Thread

(4-7a) CineBench R23 Single Thread

(4-7b) CineBench R23 Multi-Thread

Focusing on rendering performance, the results between the Core i9-12900KS and Core i9-12900K are consistently close. In single-threaded benchmarks such as CineBench R23, we saw impressive performance in comparison to other chips on test, with a 7% jump in R23 single thread performance over the Core i9-12900K.

The multi-threaded performance though between the two Intel 12th Gen Core i9 chips wasn't much difference, but there's a clear advantage in single-thread performance when rendering. It's worth pointing out that rendering is typically a multi-threaded workload.

CPU Benchmark Performance: Power, Office, And Science CPU Benchmark Performance: Encoding and Compression
Comments Locked


View All Comments

  • fazalmajid - Friday, July 29, 2022 - link

    Meh. What I want is a HEDT CPU with only P-cores, and AVX-512 re-enabled as a result. Perhaps Sapphire Rapids will deliver that.
  • nandnandnand - Friday, July 29, 2022 - link

    Fishhawk Falls, Q4 launch maybe.

  • Silver5urfer - Friday, July 29, 2022 - link

    HEDT is dead.

    Intel won't release an X299 successor. Their new Sapphire Rapids based HEDT is W, Workstation class. Meaning Prosumer just like Threadripper Pro. So expect a super high premium asking price.

    Gaming and Mobile industry killed HEDT. Nowadays most of them spend more time on their junk Smartphone consuming all the stupid Social media drama and etc. So PC users are only relegated to those so called "Gaming" which is mostly - Fortnite, Pubg, COD Warzone, Apex Legends. All this garbage. Not SP games. And Windows 11 direction is also more geared towards mobile UI.

    All in all HEDT is essentially gone.
  • brucethemoose - Friday, July 29, 2022 - link

    I disagree, as I think the core count wars killed HEDT.

    No game I know of (other than one beta MMO) can fully saturate a top end consumer CPU these days. And most workloads will get done *reasonably* quickly on a 12900KS or 5950X.

    You need more? Well thats what the P/W series is for. There's a lot of fixed-cost overhead designing something like X299 or TR4, and I don't think the volume justifies it over just making some workstationy motherboards/CPUs on a heavily amortized server socket.
  • StevoLincolnite - Friday, July 29, 2022 - link

    My old 3930K from over 10 years ago is still playing the latest and greatest games just fine. Overclocks like a champ too.
    Running Ryzen 9 at the moment with 64GB of Ram.

    But Quad Channel+6 Core/12 threads is what gave it that longevity because it's a HEDT platform.

    Fast forward to today... They essentially just moved HEDT chips onto consumer platforms and dialed up the core counts... Which is why the price points of high-end Ryzen 9 can align itself to older HEDT chip price brackets of old.

    There just isn't a dedicated socket for it anymore... Or Quad channel memory.
  • michael2k - Saturday, July 30, 2022 - link

    I don’t think it’s possible to make a CPU faster anymore until Intel gets to 4nm; it just takes too much power.

    So their only choice is wider and more cores. Apple is a node ahead and will probably hit 3nm next year when Intel hits 4nm.
  • StevoLincolnite - Sunday, July 31, 2022 - link

    Keep in mind that nodes are not directly comparable based upon pure marketing nomenclature.

    Intel 7nm for example is absolutely superior to TSMC or Samsung 7nm in actual feature sizes.
  • michael2k - Sunday, July 31, 2022 - link

    Yes you are correct but also irrelevant. Intel 7 may be superior to TSMC 7 but inferior to TSMC 5 or TSMC 5P
  • Zoolook - Monday, August 1, 2022 - link

    I guess you mean Intel 7, which is their renamed 10nm, and it's debatable, Intel 7 never reached their initial proposed logical density and in comparisons of chips they seem to have less than 10% lead in density and their volume production launched years after TSMC and it's clearly worse in power efficiency.
    TSMC is gearing up volume production on N3 which is a year ahead of Intels comparable (projected density) Intel 4 process.
  • michael2k - Saturday, July 30, 2022 - link

    It’s funny how Apple still has a ‘jest’ CPU; 16 pcores and 4 ecores in the M1 Ultra.

    But AMD still sells a 16 core part too:


    The real question is if core counts will go up with the M2 Ultra; adding 2 p cores to the M2 Max (10/2) would give the M2 Ultra 20/4

    The problem Intel and AMD have is that their power draw is so high it gets hard to add more cores and still cool the part.

Log in

Don't have an account? Sign up now